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Much interest has recently focused on the viscosity of nano-confined liquids. Frequency modulation

atomic force microscopy (FM-AFM) is a powerful technique that can detect variations in the conserv-

ative and dissipative forces between a nanometer-scale tip and a sample surface. We now present an

accurate formula to convert the dissipation power of the cantilever measured during the experiment

to damping of the tip-sample system. We demonstrated the conversion of the dissipation power ver-

sus tip-sample separation curve measured using a colloidal probe cantilever on a mica surface in

water to the damping curve, which showed a good agreement with the theoretical curve. Moreover,

we obtained the damping curve from the dissipation power curve measured on the hydration layers

on the mica surface using a nanometer-scale tip, demonstrating that the formula allows us to quantita-

tively measure the viscosity of a nano-confined liquid using FM-AFM. VC 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4903484]

Much attention has recently been paid to nano-confined

liquids by researchers in various fields such as biophysics,

tribology, geophysics and nanotechnology.1–4 The viscosity

of a nano-confined liquid has been intensively studied using

surface force apparatus (SFA) technique and atomic force

microscopy (AFM).5–8 In particular, frequency-modulation

AFM (FM-AFM) in liquids, an emerging technique that

allows us to measure the interaction forces in a three-

dimensional (3D) volume near the solid/liquid interface with

a molecular resolution,9–12 is a promising tool for investiga-

tion of the viscosity of a nano-confined liquid with a high

spatial resolution. We recently demonstrated that 3D force

maps obtained by FM-AFM at the mica/water interface

reflect the structured water layers on the mica surface.10–12

In these experiments, the hydration force exerted on the tip

at the end of a cantilever was measured as the resonance fre-

quency shift of the cantilever. The frequency shift measured

during the experiment was subsequently converted to the

conservative interaction force and energy using analytical

equations.13,14 One of the great advantages of FM-AFM is

that the conservative and dissipative interaction forces can

be simultaneously and independently measured. During the

FM-AFM experiments, the oscillation amplitude of the canti-

lever is usually kept constant (constant amplitude mode). If

the dissipative interaction force is exerted on the tip, an addi-

tional input power is required to keep the oscillation ampli-

tude constant; otherwise, the oscillation stops; the magnitude

of the additional input power is a measure of the dissipation

power in the tip-sample system. If the dissipation power of

the cantilever can be converted to the damping coefficient of

the system, FM-AFM can be used to quantitatively measure

the viscosity of a nano-confined liquid with a high sensitivity

as well as a high spatial resolution since the relationship

between the damping and viscosity has been well estab-

lished.15 However, the dissipation power of the cantilever is

measured as an average value over an oscillation cycle, in

which the tip travels back and forth for a distance on the

order of nanometers in the medium having a local variation

in the viscosity, therefore, the conversion of the dissipation

power to the damping or the viscosity is not straightforward.

Although several researchers have published papers on the

methods to convert the dissipation power to the damping or

viscosity, they were analytical formulas which were only

valid for cases in which the oscillation amplitude is far

smaller or larger than the characteristic length of the local

variation in the damping or viscosity,16,17 otherwise one had

to convert the dissipation power to the damping using a com-

puter simulation.18 An analytical formula to convert the dis-

sipation power to the damping coefficient of the system

regardless of the oscillation amplitude of the cantilever has

not yet been established.

In this study, we derive an accurate formula to convert

the dissipation power of the cantilever to the damping

regardless of the oscillation amplitude. We first applied the

equation to convert the dissipation power versus separation

curve obtained by FM-AFM with a colloidal probe at a

mica-solution interface. Then, the dissipation power was

recovered from the damping curve to confirm the validity of

the formula. Second, we more accurately converted the dissi-

pation power curve for the hydration layers on the mica sur-

face using a nanometer-scale tip to the damping coefficient

than previously reported,12 thus showing the variation in the

viscosity in the hydration layers.

The equation of motion of an oscillated cantilever in

dynamic-mode AFM is expressed as

m
d2q tð Þ

dt2
þ c zþ Aþ q tð Þð Þ dq tð Þ

dt

þ kq tð Þ � Fint zþ Aþ q tð Þð Þ ¼ Fd z; tð Þ; (1)
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where q is displacement of the cantilever, t is the time, m is

the effective mass of the cantilever, cðzÞ is the damping, z is

the closest tip-sample distance during an oscillation cycle, k
is the spring constant of the cantilever, Fint is the conserva-

tive interaction force acting on the tip, A is the oscillation

amplitude, and Fdðz; tÞ on the right side represents the drive

force. cðzÞ can be expressed as cðzÞ ¼ c0 þ ctipðzÞ, where

ctipðzÞ is the damping of the tip-sample system on which we

will focus. c0 is a parameter corresponding to the intrinsic

damping of the cantilever that is constant throughout the

experiment, which is defined as k=ðQx0Þ, where Q and x0

are the mechanical quality factor and natural angular reso-

nance frequency, respectively.

The dissipation power in the tip-sample system (Ptip)

caused by the dissipative interaction force acting on the

tip is calculated as the balance between the input power to

the system (Pinput) and the dissipation power in the

cantilever-sample system (Pcantilever). Pinput and Pcantilever

are calculated from the right and left sides of Eq. (1),

respectively, as

Pinput ¼
x zð Þ
2p

þ
Fd z; tð Þdq (2)

and

Pdissipation ¼
x zð Þ
2p

þ
c0 þ ctip zþ Aþ q tð Þð Þ
� � dq tð Þ

dt
dq: (3)

For the FM-AFM in the constant amplitude mode, the difference

between the phases of qðtÞ and Fdðz; tÞ is maintained at p=2 by

a self-oscillation loop or a phase-locked loop, and A remains

constant by an automatic gain controller during the experiment.

Therefore, we write qðtÞ and Fdðz; tÞ as qðtÞ ¼ A cos ½xðzÞt�
and Fdðz; tÞ ¼ �kAdðzÞ sin½xðzÞt�; respectively, where Ad is the

drive amplitude of the cantilever, and obtain

Pinput ¼
Ax zð Þ

2
kAd zð Þ (4)

and

Pdissipation ¼
A2 x zð Þ½ �2

2
c0 �

A x zð Þ½ �2

2p

�
þ

ctip zþ Aþ q tð Þð Þ
� �

sin x zð Þt½ �dq: (5)

The first and second terms in Eq. (5) represent the dissipation

power in the cantilever-sample system (P0) and that in the

tip-sample system (Ptip). Therefore, Ptip is calculated from

the experimental parameters as16

Ptip zð Þ ¼ Ax zð Þ
2

kAd zð Þ � A2 x zð Þ½ �2

2
c0

¼ A2 x zð Þ½ �2

2
c0

x0Ad zð Þ
x zð ÞAd0

� 1

� �
; (6)

where Ad0 is the drive amplitude at the start of the experi-

ment defined as A/Q.

To obtain ctipðzÞ from the experimental data, one has to

invert the relationship

Ptip zð Þ ¼ �A x zð Þ½ �2

2p

þ
ctip zþ Aþ q tð Þð Þ
� �

sin x zð Þt½ �dq: (7)

For the cases when the oscillation amplitude is significantly

smaller than the characteristic length of the variation in the

damping, ctipðzÞ is considered to be constant for the tip travel

range during an oscillation cycle. Therefore, ctipðzÞ can be

obtained from the experimental parameters using Eq. (6) as

ctip zð Þ ¼ 2

A2 x zð Þ½ �2
Ptip zð Þ ¼ c0

Ad zð Þ
Ad0

x0

x zð Þ
� 1

� �
: (8)

On the other hand, for the case when the oscillation ampli-

tude is far greater than the characteristic length of the varia-

tion in the damping, the analytical formula presented by

D€urig can be used to calculate ctipðzÞ .17 Except for such

extreme cases, ctipðzÞ had only been accessible by a compu-

tational simulation as already mentioned.18

In the following text, we present an analytical formula

for calculating ctipðzÞ from the measured parameters, derived

in the same way as those for calculating the conservative

force from the frequency shift14 and the instantaneous tun-

neling current from the time-averaged tunneling current.19

Equation (7) can be expressed as

Ptip zð Þ ¼ A2 x zð Þ½ �2

p

ð1

�1

ctip zþ A 1þ uð Þð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u2
p

du (9)

with u ¼ qðtÞ=A ¼ cos ½xðzÞt�. Equation (9) is similar to

those for the frequency shift and the conservative force and14

and for the time-averaged tunneling current and the instanta-

neous tunneling current.19 The weight function
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u2
p

in

the integrand is different from those; u=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u2
p

for the con-

servative force14 and 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u2
p

for the tunneling current.19

First, ctip is converted to an integral representation

ctipðzÞ ¼
ð1

0

BðkÞ expð�kzÞdk; (10)

which is the Laplace transform of BðkÞ. PtipðzÞ then becomes

Ptip zð Þ ¼ A2 x zð Þ½ �2
ð1

0

B kð Þ T kAð Þ
kA

exp �kzð Þdk; (11)

where TðyÞ ¼ I1ðyÞ expð�yÞ, and I1(y) is the first order modi-

fied Bessel function of the first kind. The Laplace transform and

the inverse Laplace transform are now expressed as L{} and

L�1{}, respectively, and the damping coefficient ctip becomes

ctip zð Þ ¼ L
kA

T kAð Þ L
�1 Ptip zð Þ

A2x zð Þ2

( )( )
: (12)

In order to analytically calculate Eq. (12), the Pade approxi-

mation for T(y), which is

T yð Þ ¼
y

2
1þ 1

8

ffiffiffi
y
p þ

ffiffiffi
p
2

r
y3=2

 !�1

(13)

is used.14 The maximum error of this approximation is

within 5%. Finally, taking advantage of the properties of the
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Riemann-Liouville fractional integral,14 the following equa-

tion is obtained:

ctip zð Þ ¼
2Ptip zð Þ

A2 x zð Þ½ �2
� 1

4
ffiffiffi
p
p

A3=2

ð1
z

1ffiffiffiffiffiffiffiffiffiffi
s� z
p d

ds

� Ptip sð Þ
x sð Þ½ �2

 !
dsþ

ffiffiffi
2

A

r ð1
z

1ffiffiffiffiffiffiffiffiffiffi
s� z
p d2

ds2

Ptip sð Þ
x sð Þ½ �2

 !
ds:

(14)

Note that all three terms on the right side of Eq. (14) have

different powers of A as weighting factors. When A is small

compared to the range of the dissipative interaction, namely,

A� s, where s is a scaling parameter for the range of the dis-

sipative interaction, the first term on the right side of

Eq. (14) is dominant. This term corresponds to Eq. (8). On

the other hand, when A� s, an approximate equation

ctip zð Þ �
ffiffiffi
2

A

r ð1
z

1ffiffiffiffiffiffiffiffiffiffi
s� z
p d2

ds2

Ptip sð Þ
x sð Þ2

 !
ds (15)

is obtained, because the third term is much larger than any

other terms on the right side of Eq. (14). When the variation

in the frequency shift is small enough compared to that in

the dissipation power, Eq. (15) is simplified as

ctip zð Þ �
ffiffiffi
2

A

r
1

x zð Þ2
ð1

z

1ffiffiffiffiffiffiffiffiffiffi
s� z
p d2Ptip sð Þ

ds2
ds; (16)

which corresponds to the analytical equation derived by

D€urig.17

To demonstrate the inversion equation presented as Eq.

(14), we measured the damping in the tip-sample system

using a colloidal probe cantilever. We used a gold-coated

colloidal probe cantilever, FmG01_Bio900/Au (NT-MDT),

and a cleaved muscovite mica. A SiO2 colloid whose radius

was 450 nm was fixed on the cantilever with a Au backside

coating. The nominal spring constant and resonance fre-

quency of the cantilever measured in a 1.0 M KCl aqueous

solution were 3 N/m and 23.9 kHz, respectively.

The instrument we used was a modified AFM instru-

ment (Shimadzu SPM-9600) with a home-built controller.

The cantilever was oscillated by the photothermal excitation

method, which made it possible to quantitatively measure

the dissipation power and the frequency shift.10,12,20

Figures 1(a) and 1(b) show plots of the frequency shift

and normalized drive amplitude (AdðzÞ=Ad0) as a function of

z, which was corrected for the static deflection of the cantile-

ver and thereby referred to as separation hereafter. The

curves are shown after the averaging of 128 curves. The os-

cillation amplitude was kept constant at 9.0 nm peak-to-peak

(A¼ 4.5 nm). The long-range negative frequency shift in Fig.

1(a) was caused by the hydrodynamic loading. As the canti-

lever was brought close to the surface, the added mass effect

which decreases the resonance frequency became increas-

ingly prominent.21,22 See Supplementary Material for further

explanation on the frequency shift in Fig. 1(a).23 We first cal-

culated Ptip(z) from Fig. 1(b) using an equation similar to Eq.

(6), but considering the frequency dependence of the cantile-

ver damping. See Ref. 10 for the details. The obtained dissi-

pation power curve is shown in Fig. 1(c).

Figure 2 shows ctipðzÞ calculated from PtipðzÞ using

Eq. (14). Figure 2(a) shows three parts of ctipðzÞ, which cor-

respond to the three terms in Eq. (14), among which the first

and third terms correspond to the approximated equations for

small and large amplitude limits, respectively. When the tip-

sample separation was greater than 5 nm, the first term was

dominant and gradually increased as the tip was brought

closer to the sample surface. This is consistent with the fact

that PtipðzÞ increased with the characteristic length greater

than the oscillation amplitude. On the other hand, when the

separation was reduced to less than 4 nm, the contribution of

the third term increased.

ctipðzÞ obtained as the sum of the three terms plotted in

Fig. 2(b) was in good agreement with the theoretical damp-

ing curve obtained by

ctip zð Þ ¼ 6pgR2

z
; (17)

where g and R are the viscosity of water (8.9� 10�4 Pa s)

and the radius of the colloid, respectively. Note that the ori-

gin of z for the plots in Fig. 1 was determined by the fitting

Eq. (17) to Fig. 2(b).

We recovered the dissipation power curve using Eq. (9)

to validate the inversion equation, Eq. (14). Figure 2(c) is the

dissipation power curve calculated from the experimental

damping curve in Fig. 2(b) using Eq. (9), shown together

with the original dissipation power curve in Fig. 1(c). They

are almost completely overlapped with each other; a slight

deviation was possibly due to the error in the approximation

used for the computation, Eq. (13). Moreover, we performed

a series of the same experiments with different oscillation

FIG. 1. Frequency shift (a), normalized drive amplitude (b), and dissipation

power (c) curves as a function of the tip-sample distance on mica obtained

in a 1 M KCl aqueous solution using FM-AFM with a colloidal probe.
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amplitudes to prove that the inversion equation is valid

regardless of the oscillation amplitude.23 Finally, it is worth

to mention here that the inversion formula, Eq. (14), cannot

be readily applicable for the dissipation power curve meas-

ured in the constant excitation mode. However, the equation

could be extended by the same approach taken by H€olscher

et al. for conversion of the frequency shift curve to the force

curve measured in the constant excitation mode.24

We next applied Eq. (14) to the dissipation power versus

distance curve that we reported as Fig. 3(a) in Ref. 12. Note

that the origin of z was defined at the position of the most

negative frequency shift.10,12 We found that the third term in

Eq. (14) produces a large fluctuation because it contains a

second derivative of the data. As the original experimental

data were not sufficiently averaged, we obtained the smooth

dissipation power curve by fitting the experimental data to

the following function:

Ptip zð Þ ¼

p1

zþ p2

þ p3 z � z0ð Þ

p4 z0 � zð Þp5 þ p1

zþ p2

þ p3 z 	 z0ð Þ

8><
>: (18)

with fitting parameters p1, p2, p3, p4, p5, and z0. z0 corre-

sponds to the position of the onset of the dissipation power at

which the tip began touching the first water layer formed on

the mica surface, and was found to be 0.07 nm. The fitted

curve is shown in Fig. 3(a) with the original experimental

data. The fitted curve was then converted to the damping

curve using Eq. (14). The first, second, and third terms on

the right side of Eq. (14) are presented in Fig. 3(b),

respectively. The first term is identical with Fig. 3(a) in

Ref. 12. The sum of the three terms is shown in Fig. 3(c).

The damping obtained by Eq. (14) shows a more prominent

rise at z0 than the conversion only with the first tem in Eq.

(14) (small amplitude limit).

We also subtracted the damping caused by the squeeze

film damping of the mesoscopic tip, cfilmðzÞ, from ctipðzÞ, as

presented in Ref. 12 using the following equation:

cfilm zð Þ ¼ 6pgR2

zþ h0

þ coffset; (19)

where h0 is the difference between the mesoscopic and nano-

scopic tips, and coffset is an offset. The fitting parameters

were determined as R¼ 24 nm, h0¼ 0.6 nm, and coffset¼�5

nNs/m, respectively. ctipðzÞ, cfilmðzÞ, and ctipðzÞ � cfilmðzÞ,
which correspond to the damping of the tip-sample system

recovered from Ptip(z), the squeeze film damping of the

mesoscopic tip (Eq. (19)), and the damping of the nano-

scopic tip, respectively, are shown in Fig. 3(c). The damping

onset observed when the tip started to interact with the

adsorbed/first hydration layers is more precisely calculated

from the experimental data, which is now more prominent

than Fig. 3(b) in Ref. 12. It is suggested that the increased

FIG. 2. (a) Damping coefficient terms converted from the dissipation power

curve in Fig. 1(c) using Eq. (14). (b) Damping coefficient curve as a function

of tip-sample separation as a sum of the three terms in (a). A theoretical

curve calculated using Eq. (17) is also shown. (c) Dissipation power curve

calculated from the experimental damping curve in (b) using Eq. (9), shown

together with the original dissipation power curve in Fig. 1(c).

FIG. 3. (a) Dissipation power curve measured at the mica-solution interface

and the fitted curve. (b) Converted partial damping curves calculated using

the three terms in Eq. (14). (c) Damping coefficient curve converted from

the fitted dissipation power curve shown in (a). The damping due to bulk

water and the damping due to the adsorbed/first water layer were also

plotted.
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damping might be because the viscosity of the adsorbed/first

hydration layers is greater than that of the bulk water; how-

ever, the nonlinearity may also be a possible cause of the

increased damping.25

In summary, we obtained the analytical equation to recover

the damping from the experimental available dissipation power.

The experimental curve of the damping with the colloidal probe

was in good agreement with the theoretical damping curve.

Moreover, we applied the equation to the dissipation power ver-

sus distance curve on the solution-mica interface, and showed

that the damping of the adsorbed/first hydration layers was

greater than that of the bulk solution. Based on the analytical

equation presented here, FM-AFM is useful to quantitatively

measure the viscosity of a nano-confined liquid with a high sen-

sitivity as well as a high spatial resolution.
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